Moteur micro-linéaire de fréquence pour le simulateur de mouvement servo Moteur à haute accélération

Lieu d'origine Jiangsu, Chine
Nom de marque SUPT
Certification ISO9001:2008
Numéro de modèle VCAR1351-0310-00A
Quantité de commande min ≥3
Prix $870.00/pieces
Détails d'emballage micro-moteur de carton et de boîte en bois
Délai de livraison La livraison de jours du général 5-7, rapidement 3-5 jours, d'en vrac être négocié
Conditions de paiement T/T
Capacité d'approvisionnement Négociable

Contactez-moi pour des aperçus gratuits et des bons.

WhatsAPP:0086 18588475571

wechat: 0086 18588475571

Skype: sales10@aixton.com

Si vous avez n'importe quel souci, nous fournissons l'aide en ligne de 24 heures.

x
Détails sur le produit
Garantie 3 mois à 1 an Utilisation BATEAU, voiture, UAV, 3D impression, microscope, Endoscope, robot, ventilateurs médicaux
Le type Micro moteur Le couple 30
Construction Magnéte permanent Commutation Le pinceau
Protégez la fonctionnalité Entièrement fermé Velocité (RPM) Il est rapide.
Courant continu (A) A 19,9 Efficacité IE 1
Force maximale ((N) 1351 Pour les véhicules à moteur à combustion 31
Pour les véhicules à moteur électrique 73.5 Poids du rotor ((kg) 1050
Diamètre de redresseur (millimètre) 110 Force continue (N) 376,8
Mettre en évidence

Moteur micro-linéaire de fréquence 19

,

9 A

,

Simulateur de mouvement Moteur à haute accélération

Laisser un message
Description de produit

Moteur linéaire de fréquence pour les simulateurs de mouvement servo

 

 

 

 

 

Description du produit

 

Les moteurs à bobine vocale jouent un rôle crucial dans les simulateurs de mouvement servo.fournir une expérience réaliste pour diverses applications telles que la formation au vol, simulations de conduite et expériences de réalité virtuelle.

 

La fonction principale du moteur à bobine vocale dans un simulateur de mouvement servo est de générer un mouvement linéaire.Il y parvient en convertissant l'énergie électrique en mouvement mécanique à l'aide de principes électromagnétiquesLe moteur est constitué d'une bobine suspendue dans un champ magnétique, et lorsqu'un courant passe à travers la bobine, il interagit avec le champ magnétique, ce qui entraîne une force linéaire ou un déplacement.

 

Dans un simulateur de mouvement, plusieurs moteurs à bobine vocale sont généralement utilisés pour contrôler différents degrés de liberté, permettant des mouvements multi-axes.Le contrôle précis et la réponse à grande vitesse des moteurs à bobine vocale permettent au simulateur de simuler l'accélération, la décélération et les changements de direction avec précision.

 

Le moteur à bobine vocale, doté d'une grande précision et de la possibilité de le contrôler, est adapté à la simulation de mouvements délicats et de réglages fins.les rotations, vibrations et oscillations, selon la conception et la configuration du simulateur.

 

 

Paramètres du produit:

 

Modèle de produit Force maximale
(N)
Force continue
à 25°C ((N)
Traction totale
(mm)
Voltage maximal
(V)
Constante du champ électromagnétique arrière
(V/m/s)
Poids de la bobine
Le montant de l'aide
Diamètre du stator (mm) La longueur
(mm)
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 0.88 0.28 6.4 6.9 0.29 3 9.5 17.7
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 0.73 0.42 1 4.8 0.6 2.7 24 11.2
Le nombre d'équipements utilisés est déterminé par le système de mesure. 2.55 0.81 12.7 11.6 0.77 .6.6 12.7 24
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 6.2 1.9 3.9 6.6 1.12 7.9 20 17.2
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 6.2 2.6 5 15.7 3.57 8.2 25 18.2
Le nombre d'équipements utilisés est déterminé par le système de mesure. 7.2 2.4 4 7.5 1.88 7 14.2 23
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 7.8 2.5 6.4 9.9 1.5 7.2 19.1 23.8
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 7.1 2.3 12.7 12.8 1.6 11.4 19.1 27
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 11.4 2.1 5 11.8 3 11.2 24 17.2
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 10.5 2.9 10 43.8 3.5 20 31 26.8
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 13 3.5 3 16 3.5 12 25 21
Le nombre d'équipements utilisés est déterminé par le système de mesure. 13 4.2 7.2 26.6 5.72 16.2 26.2 24.7
Le nombre total de véhicules ne doit pas dépasser 500. 14 4.5 25 26.5 3.9 35 25.4 44.2
Le nombre total de véhicules ne doit pas dépasser 5 tonnes. 15 6.5 6.2 26.2 9.75 14.8 33 25.6
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 22 6.6 9.8 24.7 5.8 20 34.1 35
Le nombre d'émissions de CO2 est calculé en fonction de la fréquence d'émission de CO2. 22 11.4 44.8 14.3 4 52 48 75.7
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 25.3 8 63 50.6 5 68 31.8 83.1
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 29.4 4.73 15 40.5 7.4 27 30 31
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 32 8.9 5 29.3 7.1 48 40 41.7
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 33 8 9.9 24.3 5.87 23.5 36 26.7
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 33 13.5 22.4 26.7 6.8 69 58 72
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 35 11 9 26.4 9 33 25.4 44.3
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 35 15.6 10.5 11.9 5 91 50 67
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 44 16.3 4 18.3 8.9 46.5 53 21.2
Le nombre d'équipements utilisés est déterminé par le système de mesure. 44.1 17.7 5.9 14.3 8 43 46 22
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 44 13.7 7.5 16.8 7.6 38.6 31.1 35.9
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 44 11.7 24.9 44.9 8.88 65.9 38.1 51.3
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 70 27.3 14.9 26.9 17.7 79 43 53.7
Le nombre d'équipements utilisés est déterminé en fonction de l'état de la pièce 75 30 20 26.2 15.2 65 70 38.7
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 80 35 12.9 27.7 18 149 49 53.8
Le nombre d'équipements utilisés est déterminé par le système de mesure. 87 21.67 6.2 34.5 12.7 45.2 43.1 34.9
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 87 17.5 56.3 63.4 8.1 177 72 110
Le nombre d'unités d'équipement est déterminé par le système de mesure de l'équipement. 105 35.4 16.1 20.1 11.5 150 60.4 40.4
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 110 37.4 38 23.2 9 150 60.4 60.4
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 113 35 8.9 31 17.5 125 73 27.5
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 115 30.1 6.5 35 17.3 52 40 58
Le nombre d'équipements utilisés est déterminé par le système de mesure de l'équipement. 130 40 31 30.4 20.5 280 75.6 56.5
Le nombre d'équipements utilisés est déterminé en fonction de l'échantillon. 140 42.2 15 33.4 26.6 80 53 53.7
Le nombre d'unités utilisées est déterminé par le système de mesure. 210 66.2 25.4 56.6 28 230 43.7 111.8
Le nombre d'émissions de CO2 est calculé en fonction de la fréquence d'émission de CO2. 262 111 11.2 35.1 41 285 71 64
Le nombre d'unités d'équipement est déterminé par le système de mesure. 262 112 24.9 28.2 26 785 66 109.1
Le nombre d'émissions de CO2 est déterminé par la méthode suivante: 294 56.8 49.8 114 24.5 685 93 136.9
Le nombre d'unités d'équipement est déterminé par le système de mesure de l'équipement. 436 147.6 18.7 40.7 40.7 648 80.4 91
Le nombre d'unités d'équipement est déterminé par le système de mesure de l'équipement. 436 167 25 31.6 37.2 775 78.4 110
Le nombre d'émissions de CO2 est calculé en fonction de l'indice de CO2 de l'installation. 436 142.6 37.3 38 29.8 1050 76 163
Le nombre d'équipements utilisés est déterminé par le système de mesure. 980 605 24.9 41.5 104 1426 126 134.5
Le nombre d'unités d'équipement est déterminé par le système de mesure de l'équipement. 1351 376.8 31 73.5 68 1071 110 143.7
 

 

 

La principale application d'un moteur à bobine vocale:
1.Industrie des semi-conducteurs: câblage, découpe, forage, systèmes de transport, soudage, robotique.

2.Le fonctionnement des vannes sur le terrain:Type de vannes de mesure, systèmes d'essai de pression, chimie des vannes pneumatiques

le système d'injection.

3.Industrie des micro-machines: systèmes d'alimentation, micro-perçage, estampage de précision.
4.Système de vibration: table à secouer, plateforme de vibration.
5.Campagne médicale: Système de micro-injection, équipement respiratoire, équipement d'essai.
6.Technologie de l'aviation: Système de contrôle de vol, système de rétroaction des pilotes.
7.Camp d'utilisation commerciale:Pompes de refroidissement par ordinateur avec caméra miniature Système de mise au point.
8Industrie de l'automatisation: équipement laser,distributeur, équipement d'essai, machines textiles.
 

Moteur micro-linéaire de fréquence pour le simulateur de mouvement servo Moteur à haute accélération 0

 

Nos services

 Les indicateurs techniques et les spécifications peuvent être personnalisés

Un service après-vente satisfaisant

 

Moteur micro-linéaire de fréquence pour le simulateur de mouvement servo Moteur à haute accélération 1

Informations sur la société

 Moteur micro-linéaire de fréquence pour le simulateur de mouvement servo Moteur à haute accélération 2

  

Certifications

 Moteur micro-linéaire de fréquence pour le simulateur de mouvement servo Moteur à haute accélération 3

Questions fréquentes

moteur à micro-ondes:

 

1.Voyages: déplacements effectifs, utilisés pour calculer le le total des déplacementsdevaleur de la force.

 

2.Direction du mouvement: installation horizontale ou verticale 90 degré.

 

3. Force de charge:cinstant dans la direction opposée deforcesur lemoteur, comme les ressorts, etc.

 

4.Poids de charge: la partie de qualité totale du mouvement, y compris le curseur de qualité

 

5Type de mouvement: 1.mouvement de point à point;2.la réciprocité de la règle (p. ex. numérisation).

 

6. courbe de vitesse: 1.une courbe de vitesse trapézoïdale;2.courbe de vitesse triangulaire; 3.courbe de vitesse sinusoïdale.